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I. Introduction

Since the development of multi-slice helical CT,
cone-beam reconstruction with a helical vertex path is
receiving increasing attention. The current multi-slice
CT scanners are adopting a class of approximate
reconstruction algorithms which can be viewed an
extension of the 2-D FBP algorithm. However, these
approximate algorithms break down as the pitch of
helix becomes large. In fact, major companies are
beginning to develop a large area detector having more
than 100 detector rows which allows a helical scan with
a quite large pitch. This limitation of approximate
algorithms motivated researchers to develop a class of
exact reconstruction algorithms [1]-[6].

The reconstruction problems in helical cone-beam CT
can be divided into the short-object (SO) problem and
the long-object (LO) problem. The SO problem aims at
reconstructing an object having a finite axial support
when the helix is long enough to cover the object support.
The LO problem aims at reconstructing a central region
of interest (ROI) of a long object when the helix is long
enough to cover the ROI but too short to cover the
whole object. In 1998, Tam [1] and Kudo et al. [2]
developed quasi-exact algorithms for the SO problem.
In 2000, Schaller et al. [3], Defrise et al. [4], and Kudo
et al. [5] extended the solutions to the SO problem to
the LO problem. The resulting algorithms are called the
Local-ROI (L-ROI) method [3],[6], the Zero-Boundary
(ZB) method [4], and the Virtual-Circle (VC) method [5]
in the literature. However, it is fair to say that these
algorithms need rather complicated modifications to the
quasi-exact algorithms for the SO problem.

The purpose of this paper is to develop new quasi-exact
FBP algorithms to the LO problem. Similarly to the VC
method [5], the algorithms can be viewed an extension
of the quasi-exact FBP algorithm for the SO problem
developed by Kudo et al. [2]. The main advantage of the
proposed algorithms is their simplicity compared with the
existing quasi-exact algorithms (L-ROI, ZB, and VC).
The algorithms need only a few small changes to the
quasi-exact FBP algorithm for the SO problem although
their derivation involves rather different mathematical
logic. We show simulation results which demonstrate that
the proposed algorithms allow to reconstruct high-quality
images indistinguishable from those by the VC method
[5].

II. Proposed Algorithms

A. FBP Algorithm for Short-Object Problem

We first review the quasi-exact FBP algorithm for the
SO problem derived by Kudo et al. [2] which is the basis
of proposed algorithms for the LO problem. This review
also helps to convince readers what modifications are
necessary to convert the algorithm for the SO problem
into the algorithms for the LO problem.

We use the same notations as in our previous papers
[2],[5]. Let f(�r) denote an object supported inside a
cylinder Ω = {�r | x2 + y2 ≤ Q2} where �r = (x, y, z)T . We
assume that cone-beam projections are measured along a
finite segment of helix:

�a(λ) = (R cosλ, R sinλ, hλ)T ; λmin ≤ λ ≤ λmax (1)

where 2πh is the pitch and the range [λmin, λmax] defines
the length of helix. Let g(u, v, λ) denote a cone-beam
projection measured from the source point �a(λ) where
(u, v) denote the detector coordinates defined such that
the u-axis coincides with the tangential direction of the
helical path �a′(λ). Let D(λ) denote the detector plane
corresponding to �a(λ) where D(λ) contains the z-axis.
We assume that each cone-beam projection is measured
over the finite region on the detector plane B which is
bounded by the cone-beam projection of the upper turn
of helix onto D(λ) and by the cone-beam projection of
the lower turn onto D(λ). The explicit expression of
B can be found in [1],[2]. This region B is known to
be the minimum detector area compatible with exact
reconstruction. Let χB(u, v) denote the indicator function
of B. We also use a notation gµ(s, t, λ) below to denote
a cone-beam projection rotated by an angle µ on the
detector plane where (s, t) denote the coordinates rotated
by the angle µ. Kudo et al. [2] derived the FBP algorithm
for the SO problem. This algorithm is quasi-exact when
the axial support of the object is small compared with the
length of helix such that g(u, v, λmin) and g(u, v, λmax)
vanish over the region B. The algorithm is summarized
as follows.

<Algorithm for SO Problem (Algorithm SO)>

[STEP 1] Weighting

g1(u, v, λ) =
R√

R2 + u2 + v2
g(u, v, λ) (2)



[STEP 2] Computation of Ramp Filtering Term

gFr(u, v, λ) =
1
2π

∫ ∞

−∞
du′h(u − u′)χB(u′, v)g1(u′, v, λ)

(3)

where h(·) denotes the kernel of the ramp filter.

[STEP 3] Computation of Boundary Correction Term

S
(b)
∆ (s, µ, λ) = cU (s, µ)gµ

1 (s, tU , λ) + cL(s, µ)gµ
1 (s, tL, λ)

(4)

gFb(u, v, λ) =
1
4π2

∂

∂u

∫ π/2

−π/2

dµS
(b)
∆ (u cosµ + v sinµ, µ, λ)

(5)

where tU (or tL) denotes the t-coordinate of the point on
which the straight line s = u cosµ + v sinµ intersects the
upper (or lower) boundary of B. The explicit expressions
of cU (s, µ) and cL(s, µ) can be found in Eq. (30) of [5].

[STEP 4] Backprojection

f(�r) =
∫ λmax

λmin

dλ
R ‖ �a′(λ) ‖

[(�r − �a(λ)) ·�1w]2
(gFr(u, v, λ)+gFb(u, v, λ))

(6)

where �1w denotes the unit vector which is directed toward
the detector center from �a(λ).

The key feature of the above algorithm is that the
filtered projection gFr + gFb can be computed as a
sum of the ramp filtering term applied to the truncated
projection χBg1 and the boundary correction term which
only depends on values of g1 along the boundary of region
B.

B. FBP Algorithms for Long-Object Problem

A blind use of the above FBP algorithm to the long
object having a large axial support compared with the
length of helix produces severe low-frequency artifacts [5].
This section describes two quasi-exact FBP algorithms
which are derived from the mathematical logic outlined
in Section II-C.

To describe the proposed algorithms, we need to define
a region on the detector plane called the region A(λ). Its
definition is as follows. Let Pmin = (umin(λ), vmin(λ))
(or Pmax = (umax(λ), vmax(λ))) denote the cone-beam
projection of the end point of helix �a(λmin) (or �a(λmax))
onto the detector plane D(λ). We define the region A(λ)
as a rectangular region bounded below by the straight
line v = vmin(λ) and bounded above by the straight line
v = vmax(λ). Let χA(λ)(u, v) denote the indicator function
of A(λ). In addition to the region B introduced to solve
the SO problem, this region A(λ) plays an important role
in the proposed quasi-exact FBP algorithms for the LO
problem. By using A(λ), the first proposed algorithm is
summarized as follows.

<Algorithm for LO Problem 1 (Algorithm LO-1)>

[STEP 1] Weighting (Eq. (2))

[STEP 2] Computation of Ramp Filtering Term (Eq. (3))

[STEP 3] Computation of Boundary Correction Term

g2(u, v, λ) = χA(λ)(u, v)g1(u, v, λ) (7)

S
(b)
∆ (s, µ, λ) = cU (s, µ)gµ

2 (s, tU , λ) + cL(s, µ)gµ
2 (s, tL, λ)

(8)

gFb(u, v, λ) =
1
4π2

∂

∂u

∫ π/2

−π/2

dµS
(b)
∆ (u cosµ + v sinµ, µ, λ)

(9)

[STEP 4] Backprojection (Eq. (6))

The comparison between the Algorithm SO and the
Algorithm LO-1 shows that we only need to multiply
each cone-beam projection g1 by the indicator function
χA(λ) before computing the boundary correction term
gFb in the LO problem. This can be done quickly in
numerical implementation because χA(λ) does not depend
on u and the explicit expression of χA(λ) is simple. Other
parts (weighting, ramp filtering, and backprojection)
do not need to be changed at all. Therefore, the
Algorithm LO-1 can be easily implemented if one has a
program for the Algorithm SO. Note that all the existing
algorithms (L-ROI, ZB and VC) need rather complicated
modifications in the structure of algorithms to deal with
the long-object.

An alternative form of the Algorithm LO-1 can be
obtained by performing the multiplication by χA(λ) before
computing both the ramp filtering term and the boundary
correction term. This leads to the following algorithm.

<Algorithm for LO Problem 2 (Algorithm LO-2)>

[STEP 1] Weighting

g1(u, v, λ) =
R√

R2 + u2 + v2
χA(λ)(u, v)g(u, v, λ) (10)

[STEP 2] Computation of Ramp Filtering Term (Eq. (3))

[STEP 3] Computation of Boundary Correction Term
(Eqs. (4) and (5))

[STEP 4] Backprojection (Eq. (6))

Note that it is easy to verify that the Algorithm LO-1
and the Algorithm LO-2 produce a same reconstruction
in the central ROI covered by the helix. This is thanks
to the locality of ramp filtering. However, they produce
different reconstructions in the region close to the end
points of helix. The Algorithm LO-2 is also very simple.
The comparison between the Algorithm SO and the
Algorithm LO-2 shows that we only need to multiply
each cone-beam projection g by χA(λ) before using the
Algorithm SO to deal with the long-object.

C. Outline of Algorithm Derivation

Due to the lack of space, we only outline the derivation
of the proposed algorithms. The algorithm derivation is



along the similar line to the derivation of the VC method
[5]. It proceeds according to the following two steps. The
first step is to construct the Radon algorithm by using
the modified Grangeat formula (the Grangeat formula [7]
which allows to combine triangular patches and half-planes
to compute the 3-D Radon derivative). The second step
is to reduce the Radon algorithm to the FBP form to
verify that unmeasurable parts of projections used in the
triangulation are unnecessary to reconstruct the central
ROI when the helix is long enough to cover the ROI.

Let us consider the reconstruction of single point �r0

in the central ROI. Let Π(�ξ, l) denote a plane having
the unit normal �ξ and the radial distance l. Let p′(�ξ, l)
denote the 3-D Radon derivative over Π(�ξ, l). From the
inversion formula of 3-D Radon transform, we know that
the reconstruction of f(�r0) needs p′(�ξ, l) over a limited set
of planes:

P = {Π(�ξ, l) | l − ε < �r0 · �ξ < l + ε, �ξ ∈ S2, l ∈ R} (11)

where ε is a small positive number [7]. By using this fact,
the procedure for the algorithm derivation is outlined as
follows.

[STEP 1] The triangulation for each Π(�ξ, l) ∈ P is
performed in the following way. Assume that the plane
Π(�ξ, l) intersects the helix at N points �a(λ1), . . . ,�a(λN ).
As shown in Fig. 1(a), we consider that the first source
point �a(λ1) covers the lower half-plane which is below the
line connecting �a(λ1) with �a(λ2), the last source point
�a(λN ) covers the upper half-plane which is above the line
connecting �a(λN−1) with �a(λN ), and other source points
cover the triangular patches as in [2],[5].

[STEP 2] The mask function χC(λ)(u, v) on the detector
plane D(λ) to achieve the triangulation defined in [STEP
1] is derived. The resulting mask function depends on the
source point �a(λ). The forms of the mask function χC(λ)

are illustrated in Fig. 1(b).

[STEP 3] We use the mathematical logic similar to [5]
(reduction of the Radon algorithm to the FBP form)
to show that unmeasurable parts of projections (which
exceed the region B for the source points close to the
end points of helix) are unnecessary to reconstruct the
point �r0. This clarifies that the filtered projections can be
computed according to the following steps. Projections
measured from the central part of helix are processed in
the same way as in the Algorithm SO because C(λ) = B
for these projections. However, for projections measured
from the source points close to the end point of helix
�a(λmin) or �a(λmax), the boundary correction term must
be included only from the subset A(λ) ∩ ∂B. This is
because C(λ) for these projections is different from B and
the corresponding boundary ∂B stops at some point Pmin

(or Pmax) defined by the cone-beam projection of the
end point of helix �a(λmin) (or �a(λmax)) onto the detector
plane D(λ) (Fig. 1(b)). Therefore, the boundary term
from the missing boundary part must be excluded from

the computation when processing these projections. This
corresponds to truncate g1 with the indicator function
χA(λ) in the Algorithms LO-1 and LO-2. This is the
rationale behind the use of new mask function χA(λ) in
addition to χB in the LO problem.
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Fig 1: Illustration of triangulation for plane Π(�ξ, l) and
the corresponding mask function χC(λ).

III. Simulation Studies

We compared the proposed algorithms with the VC
method [5] in terms of image quality, computational time,
and simplicity of implementation. The same numerical
phantoms as in [5] are used. The first phantom is the 3-D
Shepp-Logan phantom to confirm how each algorithm
reconstructs low-contrast objects. The second phantom
is the disk phantom to confirm how each algorithm
reconstructs high-contrast objects. These phantoms are
supported inside the cylinder of radius 100 (mm). The
number of helical turns is 2, the axial length of helix
is 150 (mm) (pitch 2πh is 75 (mm)), and the radius of
helix is 350 (mm). The number of cone-beam projections
is 500 per turn and each projection consists of 256×93
detector pixels. Reconstructed images have 256×256×256
pixels. We have implemented the proposed algorithms as
follows. As remarked in [2],[5], all the above algorithms
are numerically unstable because they force to apply
the ramp filtering across the boundary of region B. To
overcome this numerical problem, we used the numerical
stabilization technique based on smoothing the indicator
function χB [2],[5]. This technique computes the filtered
projection gFr + gFb in the proposed algorithms as a
sum of the three terms gF

ramp + gF
fou + gF

bound which
can be computed in a stable way [2],[5]. Furthermore,
we implemented both the single-ROI and multi-ROI
algorithms proposed in [5].

Longitudinal slices of reconstructed images with the
proposed algorithms (LO-1,LO-2) and the VC method are
shown in Fig. 2. For the Algorithm LO-1, we also show
reconstructed images with the multi-ROI implementation.
The proposed algorithms could reconstruct high-quality
images which are indistinguishable from those with the
VC method. The main difference among the Algorithms



Fig 2: Reconstructed images with the VC single-ROI (first column), the LO-1 single-ROI (second column), the LO-2
single-ROI (third column), and the LO-1 multi-ROI (fourth column).

LO-1, LO-2, and VC seems to be the region on which
accurate reconstruction can be achieved. Figure 2
shows that the LO-1 can obtain accurate images on
a slightly larger region compared with the LO-2 and
VC. This is thanks to the fact that the LO-1 discards
less data compared with the LO-2 and VC because the
multiplication by χA(λ) is applied only to the boundary
correction term. Computational times are summarized in
Table 1 (time for the approximate Feldkamp algorithm
is also shown for comparison). The difference of
reconstruction times among the LO-1, LO-2, and VC is
not so much mainly because the dominant computation
in all the algorithms is the 3-D backprojection which
is common to all of them. In terms of simplicity, the
proposed algorithms needed rather simple programming
to implement compared with the VC method. In fact,
a quite complicated routine to compute the boundary
correction term in the VC method (Appendix C of [5])
could be completely eliminated. Thus, we believe that the
proposed algorithms succeeded in dramatically reducing
the complexity of implementation compared with the
existing algorithms (L-ROI, ZB, and VC).

Table 1
Actual computational times measured by a SUN SPARC

ULTRA-1 workstation with 256 M-byte memory.

Feldkamp VC LO-1 LO-2 LO-1
(Full-Scan) (Single) (Single) (Single) (Multi)

120(min) 412(min) 301(min) 296(min) 263(min)

IV. Conclusions

The proposed quasi-exact FBP algorithms for the LO
problem are rather simple compared with the existing

algorithms (L-ROI, ZB, and VC). The algorithms
need only a few small changes to the quasi-exact FBP
algorithm for the SO problem derived by Kudo et al [2].
We will present additional simulation results with more
challenging Schaller’s head phantom at the conference.
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